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Abstract 

The carrier-to-noise ratio resulting from phase-sensitive heterodyne detection 
in a photon-limited synthetic aperture ladar (SAL) is developed, propagated 
through synthetic aperture signal processing, and combined with speckle to 
give the signal-to-noise ratio of the resulting image. Carrier- and signal-to-
noise ratios are defined in such a way as to be familiar to the optical imaging 
community. Design equations are presented to show that a 10 µ SAL in orbit 
around Mars can give centimeter-class resolution with reasonable laser power. 
SAL is harder to implement in the short-wave infrared and probably not 
practical at visible wavelengths unless very many separate images can be 
averaged. Some tutorial information on phase-sensitive heterodyne detection 
and on synthetic aperture signal processing and image formation is provided.  

 
 
1. Introduction 
 Synthetic aperture (SA) imaging has a long history of development in the form of synthetic 
aperture radar1,2 (SAR), which has permitted extensive observations of the Earth and of Venus3. 
For Mars, the Moon, and other solar system objects with little or no atmosphere, the same 
techniques can, in principle, be applied at optical frequencies4. A synthetic aperture ladar (SAL) 
could provide dramatic improvements in either resolution or, compared to SAR, the time needed 
to record an image, or both. The reduced imaging time results from the shorter time needed by 
the platform to traverse the SA that produces the same resolution with a shorter wavelength. 
When the observation range is more than about a hundred kilometers, no other method of 
imaging can offer centimeter-class resolution with reasonable real aperture size (∼ 1 m). SAL 
can examine a candidate landing zone at the scale of all significant hazards before a vehicle is 
committed to it, and provide detailed scientific information on small-scale geological features, 
such as strata or other formations on the walls of river valleys or lava channels. SAL is an active 
sensing method: it can supply images of places where sunlight is absent, such as winter-time 
polar regions, and increase coverage in single-pass encounters with asteroids or other objects. A 
system of this type is probably inappropriate for Earth observations, partly because propagation 
through the Earth’s atmosphere can degrade beam quality substantially at visible and infrared 
wavelengths, but mostly because it is far easier to achieve high resolution at some point on the 
Earth by going there than by orbiting a SAL. On other planets, the situation is reversed. 
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 This paper investigates one of the few limits on SAL that is of a theoretical nature: the limit 
imposed by photon statistics, a limit that is not relevant to SAR. A criterion is developed for the 
number of photons that are needed from each resolution element of a scene, and design equations 
are given to evaluate a proposed design with respect to this criterion. The engineering problems 
of implementing SAL are less easily dealt with. The more prominent are indicated below, but 
their actual means of solution are resolutely ignored in this paper.  
 Previous work on SAL (see Green et al.5, Yoshikado et al.6, and references cited therein) 
has not considered the implications of photon statistics and, in the laboratory, has usually used 
fixed-frequency CW lasers and measured Doppler shifts from moving targets to create an image. 
The approach to SAL analyzed here is the SAR technique of transmitting a series of FM-chirped 
pulses, heterodyning the return signal with a similarly chirped local oscillator (LO), isolating a 
single range resolution element as a narrow-frequency sub-band of the detector’s output (a 
process called deramping, see Sec. 10.1 of Curlander and McDonough1 or Sec. 1.3 of Jakowatz 
et al.2), and match-filtering data from this sub-band to pick out an azimuth resolution element by 
its phase history. This technique has recently been demonstrated at 1.55 µ in a laboratory-scale 
experiment7, though not yet in the photon-limited regime. This paper examines the effects of 
photon statistics and of speckle on imagery from a space-based system. We are motivated in part 
by a desire to bridge the gap between the heterodyne detection and optical imaging communities, 
so the development will include some relevant tutorial information, but we assume a reasonable 
degree of familiarity with the physical principles of heterodyne detection ladar (see, for example, 
Shapiro et al.8 and references cited therein) and SA image formation1,2. Park and Shapiro9 
discuss a similar system (their Doppler pulse compression is the equivalent of the phase history 
matched filter described here), but they emphasize short-range (< 100 km), air-based operation 
and do not consider photon statistics or speckle. They treat atmospheric propagation extensively, 
but that topic is largely irrelevant to the applications considered here. Kyle10 proposes a SAL 
system that transmits a coded pulse stream, rather than an FM chirp, to resolve range. The 
method is theoretically sound, but requires very fast modulation of the laser and wide-band 
detectors. Kyle evaluates his system in much the same way as presented here in Section 6, but 
drastically overstates the signal-to-noise ratio of his illustrative example. Aleksoff et al.11 show 
the full potential of SA imaging with a laboratory demonstration of a 3-D SAL, but the method 
requires 2-D motion of the platform and is therefore unsuitable to the imaging problem 
considered here.   
  The system modeled here is a scan-mode SAL that transmits a beam with a ground 
footprint having an instantaneous diameter that contains M pixels. As the motion of the sensor’s 
platform sweeps the beam along the ground, M pulses, each of time duration Tpul, are transmitted 
during the dwell time, Tdw, the time a single pixel remains illuminated. With pulse length Tpul, 
the minimum detectable frequency difference in the heterodyne signal is δf = 1/Tpul, and this, 
combined with the chirp rate, determines the minimum resolvable range element. Azimuthal SA 
processing requires measuring both the amplitude and phase of the light scattered from the scene, 
and at optical frequencies this can be done only with heterodyne detection. The fact that phase 
must be measured separates SAL from conventional optical heterodyne systems, which are used 
as sensitive detectors of narrow-band light, but measure only the number of photons received, 
not their phase. For this reason, SAL necessitates a more thorough treatment of shot noise than is 
normally required.  
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 For a photon-limited direct detector, the number of signal photons detected in a single 
measurement is known, but the same cannot be said for a photon-limited heterodyne detector. 
Because of shot noise from the LO, it is impossible to conclude that a particular number of signal 
photons was detected in a measurement. Consequently, the value of n, the number of signal 
photons inferred from the heterodyne measurement, is not restricted to integral values and is 
treated as a continuous variable when its probability density function (PDF) is considered. The 
PDF is needed to calculate the carrier-to-noise ratio (CNR) and, combined with speckle, the 
signal-to-noise ratio (SNR). CNR is an unfamiliar term in normal, direct-detection, optical 
imaging: it means SNR before the effect of speckle is included. The definition of CNR normally 
used for heterodyne detection is a legacy of its RF origin and leads to a photon-limited CNR 
proportional to the number of signal photons instead of the square root of this number. The 
photon-limited CNR for SAL will be defined to be proportional to the square root of the number 
of signal photons, a definition more familiar to the optical imaging community. CNR and SNR 
for SAL will be compared to those for a direct detection system that detects the same number of 
photons from one polarization of the light returned from a coherently illuminated scene (recall 
that scattering from ordinary surfaces randomizes polarization). In other words, SAL will be 
compared to a direct-detection system with a polarizer in it. CNRs and SNRs can always be 
improved by a factor of 2  by measuring both polarizations, but this is far easier to do with a 
direct-detection system (just remove the polarizer!) than with a heterodyne system, for which a 
beamsplitter and an additional detection channel must be added. Speckle limits the SNR of 
single-look imagery to, at most, unity for SAL, just as it does for SAR or for direct detection. 
Fortunately, the limit can be closely approached when only a few photons per pixel are received.  
 Section 2 describes phase-sensitive heterodyne detection, with emphasis on the fact that 
signal and noise are complex numbers in Fourier space. Section 3 derives the appropriate CNR 
for an imaging system and compares it to the traditional RF definition, Section 4 propagates 
signal and noise through synthetic aperture processing, and Section 5 combines the result with 
speckle to produce the SNR of the SAL image. Section 6 presents design equations, with 
emphasis on the specifications of the laser, and candidate designs for a Mars-orbiting SAL. 
Section 7 summarizes some of the applications and limitations of SAL. 
 
2. Phase-Sensitive Heterodyne Detection 

 A light wave with frequency f and phase φ is described by Eexp(2πift + iφ) with E real and 
non-negative, and the units of E are chosen so that power is related to the electric field by 
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where the integral is over the area, Ad, of the detector, E may be, and usually is, a function of 
position on the detector, and E  is the appropriate average. To relate E  to N, the average number 
of photons in pulse time Tpul (N need not be an integer), we write P = hνN/Tpul, where h = 
6.63×10-34 joule-sec and ν is the frequency of the light, to find that  
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 The frequency of an FM-chirped waveform is f = f0 + f&t, where f& = df/dt is the chirp rate, 
so the field of the LO is ELexp[2πi(f0 +½ f&t)t]. The field of the signal from a single range 
resolution element, being displaced in time by some amount ∆t and having an arbitrary phase φS0 
with respect to the LO, is ESexp{2πi[f0 +½ f&(t + ∆t)](t + ∆t) + iφS0}. In heterodyne detection the 
fields are combined on the detector to yield a detector output current given by 
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where ηd is the detector’s quantum efficiency, assumed constant across the detector, qe is the 
charge of an electron, qe/hν performs the detector’s transducer function of replacing hν by qe, ηh 
is the heterodyne mixing efficiency12, ∆f = f&∆t is the beat frequency, φS = φS0 + 2π(f0∆t + 
½ f&∆t2), and Eq. (2) has been used. The first term in the third equality of Eq. (3), when 
multiplied by Tpul/qe, is the total number of electrons generated (= photons detected). The second 
term identifies the range element in question by its beat frequency ∆f. A different range element 
yields a different ∆f, a relation that will be stated precisely in Section 6. Eq. (3) is most easily 
understood from the point of view of the semiclassical theory13, that the field itself may be 
treated classically, that is, without intrinsic fluctuations. Fluctuations in the number of photons 
detected results from a stochastic interaction between the electromagnetic field and the detector: 
shot noise, which is treated below.  
 Eq. (3) is written for a single range resolution element. In the detector’s actual output, there 
are M such terms, having M different frequencies, one for each range resolution element in the 
footprint. In order to satisfy the Nyquist criterion, the detector’s output is digitized with (at least) 
2M samples over the time Tpul, and the value of the ∆f component of the discrete Fourier 
transform (DFT) of these samples is   
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where Tpul/2M normalizes the DFT so that its DC component is the total charge generated and tm 
= mTpul/2M is the time of the mth sample. D(∆f) is divided by qeηd(ηhNL)½ to obtain the desired 
value, D'(∆f) = NS

½exp(iφS), that is needed for SA processing. It is a basic property of the DFT 
that the separation between the DFT’s discrete frequency components is δf = 1/Tpul, so D' is the 
signal over bandwidth δf (i.e., from one range resolution element) at a frequency displaced by ∆f 
from the frequency of the LO.  
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 In the photon-limited regime, the dominant source of noise is shot noise from the total 
number of photons detected, which is ηd(NL + NS). Normally NL >> NS, and that approximation 
will be used here. NL >> 1 always. As shown in Appendix A, the noise at any frequency is 
described by a 2-D Gaussian distribution [Eq. (A1) with s = 0] with, replacing N in Eq. (A5) by 
NL + NS, σ2 = qe

2ηd(NL + NS)/2 ≈ qe
2ηdNL/2. This is the noise on the signal D. If a random 

variable is divided by a constant to obtain a new random variable, the variance of the old variable 
must be divided by the square of the constant to obtain the variance of the new one. Since D is 
divided by qeηd(ηhNL)½ to obtain the desired value, D', σ2 must be divided by the square of this 
factor, (qeηd)2ηhNL, to obtain 

 2 1'
2 d h

σ =
η η

    . (5) 

 

That is, the PDF of the random variable D' plus noise is a 2-D Gaussian centered on NS
½exp(iφS) 

with width given by σ'2, as illustrated schematically in Figure 1. With signal and noise now 
specified, we are ready to describe SA processing and see how noise propagates through it, but it 
is instructive to pause at this point to examine the CNR and the number and phase uncertainties 
of heterodyne detection. 
 
3. Carrier-to-Noise Ratio 
 As stated above, CNR is SNR before speckle is taken into account, so the results of this 
section apply to a coherent-light sensor that makes repeated measurements without changing the 
part of the speckle field it samples. In optical imaging, the normal definition of SNR or CNR is 
the ratio of the magnitude of a signal to the standard deviation (square root of the variance) of the 
signal’s estimator. For photon-counting direct detection, the number of detected photons, n, 
follows Poisson statistics with 〈n〉 = ηdNS. Now, n must be divided by ηd to obtain an estimate of 
the signal: 〈n/ηd〉 = NS. For the Poisson distribution the variance is equal to the mean, that is, 
Var(n) = 〈n〉 = ηdNS, which must be divided by ηd

2 to obtain NS/ηd, the variance of the estimator 
of the signal. Thus CNR = NS/(NS/ηd)½ = (ηdNS)½, as expected.  
 For heterodyne detection, the result of measuring the return from a single pulse is a 
complex number, rexp(iφ), equal to D' plus noise, from which an estimate of D' must be derived. 
As shown in Fig. 1, rexp(iφ) is distributed according to Eq. (A1) with s = NS

½ (without loss of 
generality, we have set φS = 0) and σ = σ' from Eq. (5). The magnitude, r, is the square root of 
the number of photons inferred from the measurement: r = n½. Now 〈n〉 = 〈r2〉 = 〈x2〉 + 〈y2〉, and 
the Gaussian moments of Eq. (A1) are easily evaluated to show that 〈n〉 = s2 + 2σ'2. It is only 
slightly less easy to use 〈n2〉 = 〈r4〉 = 〈(x2 + y2)2〉 to show that 〈n2〉 = s4 + 8s2σ'2 + 8σ'4 and 
therefore that the variance of the 1-D distribution of n is  
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 An unbiased estimator of NS is n - 2σ'2, since 〈n - 2σ'2〉 = s2 = NS. Since, from Eq. (5), σ'2 = 
constant, the variance of this estimator is the same as the variance of n. Using the definition 
given above, the CNR of heterodyne detection for imaging applications is the ratio of NS to the 
standard deviation of its estimator: 
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where Eqs. (5) and (6) have been used. Taking ηd = ηh = 1 in the first approximation shows that 
the best possible CNR of heterodyne detection is a factor of 2  below the best possible CNR of 
direct detection. For NS << 1/(ηdηh), CNRIM is proportional to the number of photons detected, 
rather than to the square root of this number, a fact that will be revisited in Section 5 [see 
discussion below Eqs. (13) and (14)] where it is found to apply also to the SNR of SA imaging. 
 Heterodyne detection was first done in RF work, where CNR is defined as the ratio of 
signal power to noise power, where signal power means the square of the value of the 
heterodyne-detected signal, which is (NS

½)2 = NS,  and noise power means 2σ'2. Thus 
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where CNRIM1 is taken from the first approximation in Eq. (7). The first equality in Eq. (8) 
matches, for two examples, Eq. (12) of Park and Shapiro9 and Eq. (1) of Shapiro14, once the 
conversion to photons has been made. If the RF expression for CNR is used to discuss an optical 
imaging system, large overstatements of CNR can result, compared to what is normally expected 
in optical imaging. 
 In the ideal case, ηd = ηh = 1 and the variance is 2σo'2 = 1. The magnitude of D' is the 
square root of a (not necessarily integral) number of photons. The units of σ'2 may therefore be 
regarded as photons, so that 2σo'2 = 1 photon. This is the variance (in Fourier space) for a 
measurement done over time interval Tpul and frequency interval δf = 1/Tpul, so 2σo'2 may be 
generalized to 2σo'2 = [1 photon/(secHz)]×Tpulδf, since the time-bandwidth product of the 
measurement is Tpulδf = 1. This generalization illustrates the oft-heard statement that heterodyne 
detection adds noise at the rate of 1 photon/(secHz). But this statement can be misleading to 
those accustomed to photon-limited imaging because 2σo'2 is a variance (= noise power), not a 
standard deviation, and it is the variance of the 2-D distribution of D' plus noise, shown in Fig. 1, 
not the variance of the 1-D distribution of the number of photons, which is Var(n), given in Eq. 
(6). Another way to express this variance is to multiply it by hν and write it in terms of power as 
2σo'2 = hν wt/Hz, or, more generally, as 2σ'2 = hν/(ηdηh) wt/Hz. This form, multiplied by a 
receiver bandwidth, appears as the denominator of the expressions for CNR given by Park and 
Shapiro9 and Shapiro14.   
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 The 1-D distribution of the number of photons can be found from Goodman’s15 Eq. (2.9-
20) or (2.9-27). These equations give, respectively, exact and approximate forms of the PDF of 
n½ as, in Goodman’s notation, PA(a), where a = n½. Using n = a2, the PDF transformation 
method in Goodman’s Sec. 2.5.2 shows that the distribution of the number of photons inferred 
from a heterodyne detection of NS is ( )

SNP n  = PA(a)/(2a). This distribution is stated as Eq. (19) 

of Shapiro and Wagner16, but is not given here because all we need (see Section 5) are its first 
and second moments, 〈n〉 and 〈n2〉, which have been given above Eq. (6). Since we have not 
found them in any reference, we exhibit, for small NS, the uncertainties, ∆n and ∆φ, due to 
heterodyne measurement of the values of n and φ, from which NS and φS are estimated. The term 
uncertainty is used in place of standard deviation because that is the usual terminology of 
quantum mechanics. We already know from Eq. (6) or the denominator of the first equality in 
Eq. (7) that ηdηh∆n = (2ηdηhNS + 1)½. This way of expressing ∆n is chosen because it allows a 
single curve to show ∆n for all values of ηdηh. We again set φS = 0 so ∆φ = 〈φ2〉½, which can be 
evaluated by numerical integration using the PDF in Eq. (A1) and φ = tan-1(y/x), or using 
Goodman’s Eq. (2.9-25). The result is plotted in Figure 2, along with ∆sinφ and the products 
∆n∆φ and ∆n∆sinφ. ∆sinφ is included because sinφ rather than φ is the true quantum mechanical 
observable17. For ηd = ηh = 1, ∆n∆φ ≥ 1 for heterodyne detection, as also found by, for example, 
Shapiro and Wagner16.  
 
4. Synthetic Aperture Processing 

 Sec. 2 described the measurement of D' plus noise, where D' is the complex amplitude of 
the wave reflected from one range resolution element and σ' describes the noise of the 
measurement. Figure 3 shows a range resolution element, divided into M pixels. The pixel 
labeled m = 0 has just entered the illuminated region. Each illuminated pixel contributes a 
phasor, Am = amexp(iαm), with amplitude am and intrinsic phase αm, to D'. The intrinsic phase 
depends on the detailed structure of the element and on the viewing geometry and may be 
regarded as random. Thus the average number of photons contributing to D' is the result of the 
sum of the random phasors Am, and the discussion in the first paragraph of Appendix A shows 
that am,rms = (NS/M)½ in order that the Am add up to a complex number with magnitude NS

½.  
 The phase of each of the Am is modified by the curvature of the wave front as indicated in 
Fig. 3. Referenced to zero at the center of the wave front (m = M/2), the light described by phasor 
Am must travel a greater distance by the amount ∆lm = [(m - M/2)p]2/R, where p is the size of a 
pixel and R is the range, to return to the detector. Am is therefore multiplied by the complex 
phase coefficient Cm = exp(i∆lm×2π/λ), and the sum of all these contributions makes up the 
signal: D' = ΣAmCm. Fig. 3 and the expression used for ∆lm assume that the beam direction is 
exactly perpendicular to the velocity vector of the transmitter. Relaxing this assumption changes 
the expression for the ∆lm, but not the results of the analysis. The noise, or error, denoted by Em, 
adds to the signal to produce the result of a single measurement, ΣAmCm + Em, as indicated on 
the following page by the first row of Table 1 (less the last column, which indicates 
multiplication by Cm*). The second row shows the contributions to the measurement of the 
second pulse, when the illuminated region has moved by one pixel, and so on, until the M – 1 



 

 
 
8

row describes the pulse having the last contribution from the m = 0 pixel. Synthetic aperture 
processing applies a matched filter to pick out the phase history of a particular pixel as it passes 
through the beam’s footprint. As indicated in Table 1, and described further below, the filter 
picks out A0. Appendix B gives mathematical detail and shows how the high resolution 
characteristic of SA processing is obtained. The Cm* are indexed upward by one row to pick out 
A1, downward to pick out A-1, etc.  
 
{      A0C0 + A1C1 + . . .+ AM-2CM-2 +AM-1CM-1 + E0   } × *

0C  

{  A-1C0    + A0C1 + A1C2 + . . .+ AM-2CM-1  + E1   } × *
1C  

{ A-2C0    + A-1C1    + A0C2       .           .   + E2   } × *
2C  

     .     .       .       .           .       .     . 
     .     .       .       .       .     . 
     .     .       .       .       .     . 
{. . . A-2CM-3 + A-1CM-2 + A0CM-1    + EM-1} × *

1MC −
 

{. . .  ≈ 0       +  ≈ 0 + MA0  + ≈ 0      . . .  +  ≈ 0  +  ≈ 0 + G    }  

Table 1. Contributions of M pixels to a single measurement are multiplied by the coefficients 
Cm* and added (vertically) to yield the output of the phase-history matched filter. 

 
 For clarity of presentation in Table 1, the profile of the illuminating beam is treated as 
uniform, when in reality it would have a Gaussian or perhaps an Airy shape. A more careful 
treatment includes the beam’s non-uniform profile in the matched filter, but does not change the 
final results here or in Appendix B.  
 The next-to-last column in Table 1 contains the Em, which are the error contributions from 
shot noise. The Em are random numbers distributed according to Eq. (A1) with s = 0 and σ = σ' 
from Eq. (5). The last column shows the coefficients of the phase history matched filter. These 
coefficients are calculated from the known geometry of the observation. The bottom row, which 
is the sum of the rows above it after the multiplications by Cm* have been done, shows the 
contributions to the output of this filter. The output of the filter is comprised (mostly) of the 
phasor MA0 plus noise given by G = ΣEmCm*. The result of multiplying the random complex 
number Em by the unit-magnitude phasor Cm* is again a random complex number, so G, the sum 
of M such numbers, is a Gaussian-distributed random complex number with σ''2 = Mσ'2. The 
total number of photons from the m = 0 pixel in the final image is denoted Np, so Np/M are 
contributed by each pulse, that is, a0

2 = Np/M. Note that a0
2 may be small compared to unity. The 

PDF of MA0 + G is centered on Ma0 = (MNp)½, while the desired signal is Np. Therefore, the 
output of the matched filter must be divided by M½ to obtain a PDF centered on Np

½. 
Accordingly, σ''2 must be divided by M, returning us to σ'2 as before. Thus, the error in the 
output of the matched filter is the same as the error in the measurement of NS

½, so the PDF for 
Np is the same as that given for NS at the end of Sec. 3, with NS replaced by Np. That is, it is 

( )
pNP n , and Var(n) and the CNR for Np are given by Eqs. (6) and (7) with NS replaced by Np.  
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 The average number (averaged over speckle, which is treated in the next section) of 
photons received per pulse is NS,ave and the average number of photons per pixel in the final 
image is Np,ave. Since the photons received from M pulses are distributed over M pixels, NS,ave = 
Np,ave, that is, the average number of photons inferred from a single heterodyne detection is the 
same as the average number in each pixel in the final image. 
 It was stated above that the Cm* are calculated from the geometry of the observation. This 
calculation is a harder problem for SAL than for SAR because the accuracy of the calculation is 
set by the wavelength of the radiation, which is typically about four orders of magnitude smaller 
for SAL. (Fortunately, the range need not be known to wavelength accuracy: referring to Fig. 3, 
it is easy to show that the curvature of a wave front at 999 km range is insignificantly different 
from its curvature at 1,000 km for the small footprints possible with SAL – see Section 6.) 
Platform vibrations represent random optical path length errors that must be either eliminated or 
measured and compensated (by adjusting the measured value of φS) if they are an appreciable 
fraction of a wavelength. If this cannot be done, the phase of one returned pulse will differ from 
that of another by an unknown amount and the output of the matched filter will not be the desired 
quantity. The problem is alleviated by the fact that maintaining coherence for the duration of a 
pulse, which is only 1/M of the whole dwell time, is all that is essential to SA processing. If the 
phase changes sufficiently slowly from pulse to pulse, it can be corrected in data processing, e.g., 
by trying different phases for each pulse until the phases that produce an image are found. This 
technique, called “focusing”, is used for a variety of reasons in SAR and is feasible as long as the 
phase changes are slow2.  
  
5. Speckle and SNR 
 The most severe limit on an imaging system that uses coherent light is speckle. In the 
foregoing, the variance due to shot noise of a single pixel in the final SA image has been 
calculated. But if that pixel were viewed from a different direction, the sensor would be in a 
different part of the pixel’s speckle field and a different value of Np would be observed. Or if 
there are many pixels in the scene with the same reflection properties, they will produce different 
values of Np because different parts of their speckle fields are sampled. To find the resulting 
SNR in an image, the speckle and shot noise contributions to variance must be combined. 
 With s = 0, Eq. (A1) describes the phasor distribution of speckle. The resulting intensity 
PDF [see Goodman15, Eq. (7.5-1)] is,  
 

 ( )
0 0

1 exp p
S p

N
P N

N N
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

    , (9) 

 
where N0 = 〈Np〉 is the average of Np taken over many realizations of speckle. The second 
moment of this distribution is 〈Np

2〉 = 2N0
2, so the variance is Var(Np) = N0

2. This leads to the 
familiar result that the SNR due to speckle for a single polarization is unity: SNR = 
N0/[Var(Np)]½ = 1. Eq. (9) is given as a continuous function. In high-intensity speckle this is 
justified because N0 >> 1, in our case it is justified because both Np and N0 are averages and are 
normally not integers.  
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 For a fixed realization of speckle, the variation in the number of photons, n, that contribute 
to a particular pixel in a single image is due only to shot noise from the heterodyne detection. As 
stated in Sec. 4, the PDF of this 1-D distribution, ( )

pNP n , was introduced [as ( )
SNP n ] at the end 

of Sec. 3. We have not calculated ( )
pNP n  explicitly, but, using s2 = Np in the expressions for 〈n〉 

and 〈n2〉 given above Eq. (6), have calculated its first moment to be Np + 2σ'2 and its second to 
be Np

2 + 8Npσ'2 + 8σ'4. Combining the distribution of speckle realizations given by Eq. (9) with 
( )

pNP n  gives the total probability of getting a particular value n:  
 

 ( ) ( ) ( )
0

pT N S p pP n P n P N dN
∞

= ∫     , (10) 

 

which may be stated in words as the probability of measuring the value n given Np, summed over 
the probability of Np. The moments of n are  
 

 

( ) ( ) ( )

( ) ( )
0 0 0

2

0
2

0

2 '

2 ' ,

pT N S p p

p S p p

n nP n dn nP n dn P N dN

N P N dN

N

∞ ∞∞

∞

= =

= + σ

= + σ

∫ ∫ ∫

∫      (11) 

as expected, and 

 

( ) ( )

( ) ( )

2 2

0 0

2 2 4

0
2 2 4 2 2
0 0 0

8 ' 8 '

2 8 ' 8 ' 2( 2 ' ) ,

pN S p p

p p S p p

n n P n dn P N dN

N N P N dN

N N N

∞∞

∞

=

= + σ + σ

= + σ + σ = + σ

∫ ∫

∫  (12) 

 
so Var(n) = (N0 + 2σ'2)2, and, using σ'2 from Eq. (5), the SNR for photon-limited SA imaging is  
 

 

0
SA 0

0

0 0

0

SNR 1 for 1/( ) ,
1

for 1/( ) ,
1/ 2 for 1/( ) .

d h

d h

d h d h

d h

N
N

N

N N
N

= ≈ η η
+
η η

≈ η η η η
= = η η

?

=  (13) 

 
 These steps can be repeated for direct detection: in Eqs. (11) and (12), ( )

pNP n  is replaced 

by the Poisson distribution having mean ηdNp and the integral over n by the discrete sum over n 



 

 
 

11

appropriate for a Poisson distribution. The results are 〈n/ηd〉 = N0, 〈(n/ηd)2〉 = 2N0
2 + N0/ηd, and 

Var(n/ηd) = N0
2 + N0/ηd, so the SNR for photon-limited direct detection (DD) of one 

polarization of coherent light is 
 

 

0
DD 0

0

0 0

0

0

SNR 1 for 1/ ,
1

for 1/ ,

for 1 ,
1

d

d

d d

d

N
N

N

N N

N
N

= ≈ η
+
η

≈ η η

= η =
+

?

=      (14) 

 
which, for ηd = 1, is the same as Goodman’s15 Eq. (9.2-18) once the identification 0K N=  has 
been made. 
 Eqs. (13) and (14) show the saturation effect8 expected when speckle is the dominant 
source of noise: when N0 >> 1/(ηdηh), SNR ≈ 1 in both cases and higher values of N0 do not 
improve SNR. When N0 = 1/(ηdηh), the SNR of SAL imagery is ½ – only a factor of two below 
the limiting value of 1. SNR can, of course, be improved at the cost of complexity by measuring 
both polarizations, at the cost of resolution by combining pixels in one image, as is often done 
for SAR, and/or at the cost of more observation time by combining images that sample different 
parts of the speckle field.  
 For small N0, SNRSA is proportional to the number of photons detected, while SNRDD has 
the more familiar property of being proportional to the square root of this number. Now, if 
multiple images from uncorrelated parts of the speckle field are added together, both SNRSA and 
SNRDD improve only as the square root of the number of images combined (this is the normal 
statistical expectation, see also p. 217 of Curlander and McDonough1). This means that it is 
much harder to make up for a low count rate by adding SA images, compared to DD images, as 
the following numerical example shows. Taking ηd = ηh = 1 for simplicity, N0 = 0.1 implies 
SNRSA ≈ 0.1 and SNRDD ≈ 0.3. It takes 9 images to improve SNRDD to 0.9, but 81 to improve 
SNRSA to 0.9. This shows the importance of designing an SA system to meet the criterion N0 = 
1/(ηdηh) implied by Eq. (13). If this condition is not met, very many single-look images will 
have to be combined just to approach an SNR of unity. 
 The astute reader may ask about taking the multiple images while maintaining phase 
coherence across a larger part of the speckle field, i.e., using a larger SA. But with, say, twice the 
SA, SA processing yields twice as many pixels, each having half the extent in the azimuth 
direction as the original and each receiving the same number of photons as the original pixel. 
Adding these pixels together to match the original pixel improves SNRSA by 2 , the same result 
as adding two successive, separately processed images, so the improvement is the same whether 
the multiple images are taken coherently or incoherently. It may be helpful to remind the reader 
that, in SA imaging, the length of the SA is also the correlation length of the speckle field of a 
pixel. 
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6. Space-Based SAL Design Equations 

 In Sec. 5, we showed that the total number of photons present at the detector from one pixel 
in the scene needs to be N0 ≈ 1/(ηdηh) for a worthwhile SNR in an image (multiple images can 
then be added to improve SNR in the usual way). In this section, we calculate the number of 
photons per pixel that would be received by a Mars-orbiting SAL. The result is easily extended 
to other solar system bodies. Parameters are given below for a baseline system using 2 µ light 
and for two variations using 10 µ light. The baseline system assumes a beam footprint of 10 m 
and a resolution of 0.1 m. The 10-m footprint exposes a basic limitation of SAL – supplying 
enough photons to cover a substantially larger footprint requires prohibitive laser power. A range 
of 1,000 km is chosen in part to give an easily-scaled parameter, in part because it is about the 
maximum range at which SAL is likely to be feasible. The footprint size is assumed to be 
determined by the diffraction limit of the transmitting aperture. Circular apertures for the 
transmit and receive optics are assumed, but the area ratio of circles to squares (π/4) is ignored. 
Also ignored is the difference between the resolution measured perpendicular to the beam and 
measured on the ground. With the resolution measured perpendicular to the beam, the pixels are 
assumed square, that is, when the ground surface is inclined at 45° with respect to the beam, the 
laser is assumed to have sufficient chirp capability to yield the same cross-track resolution as SA 
processing yields in the azimuth (along-track) direction.  
 A degree of flexibility that is essential to an effective SAL is added by assuming that the 
beam can be rapidly repositioned, either by steering the beam or rotating the satellite, so that a 
footprint can be scanned more than once and/or neighboring footprints can be covered. This 
capability is needed to make up for the low SNR and small footprint inherent to SAL. Beam 
repositioning allows improvements in SNR by taking images from different parts of the speckle 
field, and in area coverage by taking a mosaic of images. Further, we assume that coherence can 
be maintained for up to Nsc scans of the same footprint, so that multi-scanning can also improve 
resolution. Nsc = 1 for normal scan mode operation and in this mode SA processing is contained 
in the assumption that the pixel size, p, is one-half the diameter of the transmitting aperture, DT, 
as shown in Eq. (B5). Scanning the footprint Nsc times means that the platform traverses an Nsc-
times-longer synthetic aperture and therefore that the resolution of the image can be Nsc times 
better, i.e., that the pixel size is given by p = DT/(2Nsc). If Nsc is allowed to become large, this 
process approaches spotlight-mode SA imaging2, a subject that is not considered here. The total 
dwell time, Tdw, is defined to be the time that a single point on the ground is illuminated by the 
beam. This is the time it takes to move the beam the length of the footprint at the speed of the 
orbiting platform, multiplied by Nsc to account for multiple scans.  
 SAR systems normally use the same antenna for transmission and reception, but this is not 
essential for SA imaging. For SAL, the receiver will be assumed to have a different aperture, 
with K times larger diameter than the transmitter. The K-times-larger aperture collects K2 as 
much light from a ground pixel and has a K-times-smaller footprint than the transmitter. There 
must therefore be K2 heterodyne detectors in the focal plane of the receiver instead of one, and 
light from the first M/K pixels shown in Fig. 3 is detected by one of these, light from the next 
M/K pixels by another, and so on. Thus, the phase history of a pixel indicated in Table 1 must be 
traced through the outputs of K detectors. There is no problem with this in principle, “only” in 
engineering. 
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Basic design parameters (general terms and a baseline numerical example are given) 

  1) λ = 2 µ = 2×10-6 m   
  2) P = laser output power = 1 kilowatt (time-averaged) 
  3) transmit optics area = DT

2 = (0.2 m) 2 
  4) receive optics area = DR

2 = K2 DT
2 = (1 m) 2 (⇒ K = 5) 

  5) R = range to scene = 1,000 km = 106 m   
  6) V = platform speed = 3.5×103 m/sec for low-altitude Mars orbit 
  7) ρ = surface reflectance = 0.1 (changes with wavelength), Lambertian distribution 
  8) ηop = combined efficiency of transmit and receive optics = 0.5 
  9) Nsc = number of scans of footprint = 1  
 
Derived quantities  

  1) F = footprint size = (λ/DT)R = 10 m (⇒ DT = λR/F)  
  2) p = pixel size = DT/(2Nsc) = 0.1 m (from SA processing) 
  3) Ω = collection solid angle = DT

2/R2 = [(1 m)/(106 m)]2 = 10-12 steradians 
  4) Tdw = dwell time = (Nsc×footprint length)/(platform speed) = NscF/V = 2.9 msec 
  5) M = number of pulses that illuminate one pixel = F/p = 100 
  6) Tpul = pulse time ≤ Tdw/M = Nscp/V = 29 µsec 
 
 Derived quantities 5 and 6 are determined by the SA processing requirement that there be 
one transmitted pulse per azimuthal resolution element. The pulse repetition frequency (PRF) is 
 

 4 0.1m1PRF 3.5 10 pulses/sec     .
3.5km/secsc sc

V V
N p N p

⎛ ⎞ ⎛ ⎞⎛ ⎞
= = × ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 (15) 

 
We saw in Eq. (4) that the Nyquist criterion requires that each pulse be sampled at least 2M 
times to recover M range resolution elements, so the data sampling rate, SR, must be SR ≥ 
2M/Tpul ≥ 2FV/(Nscp2) = 7 MHz for the numerical example, a modest requirement.  
 To see what the frequency range of the laser’s chirp must be, we first observe that the two-
way transit time of a wave front across a range increment δl is δt = 2δl/c. In Eq. (3), we saw that 
if the laser’s frequency is varied linearly through a total chirp range ∆fch in the pulse time Tpul 
( f&= ∆fch/Tpul), the change in beat frequency caused by the time increment δt is δf = 
2(∆fch/Tpul)(δl/c). We have already seen that the minimum detectable frequency difference is δf = 
1/Tpul, so setting δl = p (if the surface is inclined at 45°, a range resolution of p implies an image 
resolution of p measured perpendicular to the beam and 2 p measured along the surface) gives 
 

  0.1m1.5 GHz   .
2ch
cf
p p

⎛ ⎞
∆ = = ⎜ ⎟

⎝ ⎠
 (16) 

 
 The length of the synthetic aperture is the distance traversed by the platform in the dwell 
time. It can be written in a number of useful forms, some of which are 
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  SA 2dw sc
RL VT N F
p

λ
= = =    . (17) 

 
The diameter of the transmitter needed to give the desired footprint and the consequent pixel size 
that results from SA processing are related by 
 

 10 m2 0.2
2 1,000 kmT sc

R RD N p
F F

⎛ ⎞ ⎛ ⎞λ λ ⎛ ⎞= = = ⎜ ⎟ ⎜ ⎟⎜ ⎟µ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 meters. (18) 

 
The time-averaged laser power within the usable footprint is taken to be P/2. The power per unit 
solid angle scattered from the surface, assumed Lambertian, is then 
 

 
π

θρ cos
2
PJ =    watts/steradian, (19) 

 

where θ is an observation angle. We take cosθ ≈ 1, and multiply by the transmission efficiency to 
find that the power collected from the footprint and impinging on the detector is  
 

 
2

22 2
R

F op op
DP PP
R

ρ
= Ωη = ρη

π π
  watts. (20) 

 

The conversion factor to photons is 5×1024×λ photons/joule when λ is expressed in meters, so 
the photon rate is 5×1024×λPF. The total number of photons per pixel impinging on the detector 
in one polarization is this rate multiplied by the dwell time, by the fractional area of the footprint 
covered by one pixel, and by ½ to account for polarization. Using the synthetic aperture 
condition Nsc = λR/(2pF) from Eq. (18) and Tdw = NscF/V = λR/(2pV), this is   
 

2 22 22
24 24 24

0 2 2

2 22
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2 4 2 8

10 m 1,000 km 3.5km/sec11 photons.
1kwt 2 0.1m 1m 0.1 0.5

R R
F dw op op

opR

D pDp P R p PN P T
F pV F RVR F

DP p
F R V

λ λ⎛ ⎞ ⎛ ⎞= × λ = × λ ρη = × ρη⎜ ⎟ ⎜ ⎟π π⎝ ⎠ ⎝ ⎠

η⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞λ ρ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟µ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

(21) 

 
 Eqs. (18) and (21), along with the criterion from Eq. (13) that N0 = 1/(ηdηh) provides a near-
saturation SNR, contain most of the high-level information needed to decide if a notional design 
is adequate. The laser required to implement the design must have the capabilities given in Eqs. 
(15) and (16). We expect to find 1/(ηdηh) ≈ 2 – 4 in a well-designed system, so Eq. (21) indicates 
that the illustrative system is viable. Putting parameters for the Magellan SAR18 into Eq. (21), P 
= 50 wt, λ = 12 cm, F ≈ 20 km, p ≈ 100 m, DR = 3.7 m, R ≈ 300 km, V ≈ 10 km/sec, gives N0 ∼ 
107 photons, which shows why SAR workers don’t worry about photon statistics. Eqs. (18) and 
(21) are design equations, used to determine the hardware parameters (λ, P, DT, DR, Nsc) needed 
to produce the desired end-use parameters (p, F, R). We can substitute λR/F = DT from Eq. (18) 
into Eq. (21) to find that  
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24
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T R

op
pD DPN

R V
= × ρη

π
    , (22) 

 
which shows how the signal scales with range, keeping constant resolution, once the hardware 
parameters are fixed. Observe that Eq. (22) is independent of λ. The normal radar equation for 
range dependence of signal is N0 ∝ R-4, but Eq. (22) shows that N0 ∝ R-3 for SA imaging. The 
reason is that keeping the same p while doubling R requires doubling the length of the synthetic 
aperture. With fixed V this takes twice as long, doubling the number of photons that fall on a 
footprint, thereby reducing the loss of signal with range by one power of R.     
 Eq. (21) shows the advantage of using the longest wavelength that can give the desired 
information and/or is technically feasible on a spacecraft: the longest wavelength tends, 
depending on choices of the other parameters, to produce the largest N0. The ability to use Nsc > 
1 provides a means of achieving the same footprint and resolution with a longer wavelength by 
increasing λ and Nsc (and DT) proportionately in Eq. (18). This allows N0 to be increased and/or 
laser power to be reduced in Eq. (21), and reduces the PRF given in Eq. (15). An alternative to 
the baseline design that requires much less laser power is λ = 10 µ, DT = DR = 1 m (common 
transmit and receive aperture, which provides the simplification that K = 1), and Nsc = 5. This 
does incur the relatively mild penalty that the reflectivity of most surface materials tends to be 
low (~ 5%) in this spectral region, but allows N0 = 5 with P = 35 wt. Using Nsc = 20 and P = 140 
wt provides a resolution of p = 2.5 cm, an order of magnitude better than the proposed Mars 
Reconnaissance Orbiter19. If DR can be larger than one meter, laser power can be further 
reduced.      
 The practicality of a visible-light SAL is questionable. Using λ = 0.5 µ and DT = 0.05 m in 
Eq. (21) holds out the prospect of p = 2.5 cm from single-look imagery (Nsc = 1), but reduces N0 
to 0.2 photons. It would take a 2-m collecting aperture and a 4-kwt laser, or more, to compensate, 
and a 2-m mirror, diffraction-limited at 0.5 µ, is a formidable challenge indeed for a spacecraft, 
as is a 4-kwt visible-light laser. The problem can be alleviated by accepting a larger p, but then 
the resolution of the SA system is probably not sufficiently better than a direct-detection system 
(with the same DR) to be worth its additional complication and cost.  
 The speed of an orbiting platform is different for different bodies, and it may help the reader 
to know that, for a platform in low orbit around a body of radius Rb, V ∝ ρ½Rb, where ρ is the 
body’s density, and ρ½ varies only from about 1 for small, icy bodies to 2.3 for Mercury. ρ½ is 
2.0 for Mars, 1.8 for the Moon, between 1.4 and 1.9 for the Gallilean moons of Jupiter 
 Kyle10 evaluates a SAL system for the Earth in much the same way as presented in Eq. (21), 
but does not reduce the result to photons. In our notation, he uses P = 10 wt, λ = 10 µ, p = 0.1 m, 
DT = DT = 0.2 m, R = 200 km, ρ = ηop = 1, and V = 8×103 m/s. Comparing his Eqs. (3) and (4a) 
shows that his footprint size, denoted D' by him in his Eqs. (2) and (3) and DI in his Eqs. (10) – 
(15), is D' = DI = F = 10 m. Putting these values into Eq. (21) and multiplying by two to include 
both polarizations yields N0 = 9 photons, which makes the system viable by our definition (aside 
from the unrealistic assumptions about reflectivity and transmission efficiency), but falls about 
two orders of magnitude short of supporting the claim made in the fourth paragraph of his Sec. V 
that the CNRRF is 331 (Kyle does not consider speckle, so N0 = Np and his SNR is our CNRRF). 
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Kyle’s basic error appears to be failing to recognize the discrepancy between (a) the bandwidth 
needed to match the pulse width of ∆t = 0.23 ns stated by him as necessary to give the range 
resolution specified in his Eq. (19), and (b) the bandwidth from his Eq. (5a) on which the noise 
expression in his Eq. (16) is based. A wider bandwidth in his Eq. (16) would result in a lower 
SNR in his Eq. (17). Stated as a time, rather than bandwidth, discrepancy, Kyle’s dwell time is 
Tdw = DI/V = 10/8,000 = 1.25 ms, and he states that there are N2 pulses in this time, which, with 
N = 100 (as implied by a footprint of 10 m and a resolution of 0.1 m), implies a pulse time ∆t = 
0.125 µs, nearly three orders of magnitude greater than 0.23 ns. Kyle does not address this 
discrepancy. If the 0.125 µs value is substituted into Kyle’s Eq. (15), we find DI = 10 m, as 
expected; if 0.23 ns is used we find DI = 5,430 m. Neither value matches Kyle’s statement in the 
sixth paragraph of his Sec. V that DI = 543 m.  
 
7. Conclusion 
 This paper argues the theoretical feasibility of an orbit-based SAL at IR wavelengths for 
achieving centimeter-class resolution on the surfaces of solar system bodies that have little or no 
atmosphere. SAL’s relatively restricted set of observation ranges, a few hundred to a few 
thousand kilometers, is suited to this problem. At shorter ranges, conventional imaging in visible 
light can provide high resolution; at longer ranges, excessive laser power and/or real collecting 
aperture size is required. SAL’s limitations of low SNR and area coverage for single-look 
imagery can be alleviated by multiple images and mosaicking of scenes. A design example has 
been given that provides 2 - 3 cm resolution on Mars, an order of magnitude better than the Mars 
Reconnaissance Orbiter19, currently under study by NASA.  
 The effect of photon counting statistics on SNR for SAL has been developed. Eqs. (13) and 
(14) show that a low photon rate imposes a much greater SNR penalty on SAL than on a direct 
detection system. For SAL, if laser power is not high enough to produce an SNR close to ½ in 
single-look imagery, then, compared to direct detection, a much larger number of repeated 
images must be combined to achieve an SNR approaching unity. (But direct detection requires a 
much bigger real aperture to achieve the same resolution.) 
 Various engineering difficulties have been touched upon in the course of the discussion. The 
most obvious are the laser technology issues of developing high-power, space-qualified lasers 
with fast chirp rates, pulse repetition frequencies of tens or hundreds of kilohertz, and coherence 
times up to and perhaps beyond tens or even hundreds of milliseconds. Another major 
engineering problem is providing line-of-sight pointing control consistent with the desired 
footprint size and capable of executing multiple scans of the scene in order to produce some 
combination of increased SNR, increased area coverage, increased resolution, and reduced laser 
power. As stated in Sec. 4, generating the matched filter coefficients for SA signal processing 
requires compensating for platform vibrations to an accuracy better than the wavelength of the 
light used, a problem that requires sensitive accelerometers but will be easier to deal with for the 
smooth motion of a spacecraft than for an airborne system. To an extent, this problem can be 
handled in post-processing by the focusing methods developed for SAR. Yet another problem is 
the need to place multiple heterodyne detectors in the receiver focal plane when DR > DT. 
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Appendix A – 2-D Gaussian Probability  

 Following Goodman15, a complex number, aexp(iθ), is called a phasor. Goodman 
calculates the two-dimensional probability density function that describes the sum of a large 
number of random phasors. There are two points in this paper to which this PDF is relevant: 
finding (1) the frequency content of shot noise and the consequent variance with which a 
detected number of photons is measured by heterodyne detection, and (2) how contributions 
from the pixels in the beam’s ground footprint add up to make the measured signal. In both cases 
we need to know the sum of N of these random phasors. The sum is an origin-centered 2-D 
Gaussian distribution described by σ2 = N〈a2〉/2, where 〈a2〉 is the expectation value of a2 over 
the distribution from which a is chosen, and phase is assumed random and uniformly distributed 
over (-π, π). Adding a complex value s, representing a signal, to this distribution displaces its 
center a distance |s| from the origin, and we may, without loss of generality, take s to be real and 
non-negative, so the PDF of the sum plus signal is  
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which is taken from Goodman’s Eq. (2.9-18) with minor changes in notation. x and y represent 
the real and imaginary parts, respectively, of a complex number. In extension of the definition of 
variance for a 1-D Gaussian distribution, the variance of this PDF is  
 

 [ ] 2 2 2 2 2Var ( , ) ( ) ( ) 2P x y x s y x s y≡ − + = − + = σ     . (A2) 
 

When s = 0, (2σ2)½ = N½arms is the rms value of the magnitude of the sum. 
 The value of σ2 for heterodyne detection is found by evaluating shot noise. The easiest way 
to see that shot noise results in white, Gaussian noise in frequency space is to write the current 
produced in a detector of quantum efficiency ηd by N impinging photons as  
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where qe is the electronic charge, the sum is over the ηdN detected photons, and tn is the creation 
time of the nth electron. The Fourier transform of this current is 
  

 
[ ] ( ) ( )

( )

10

1

FT ( ) exp 2

exp 2 .

d

d

T N

e n
n
N

e n
n

I t q t t ift dt

q ift

η

=

η

=

= δ − − π

= − π

∑∫

∑
  (A4)  

 

Since the tn are randomly distributed, the second sum in Eq. (A4) is the sum of a large number of 
phasors with (constant) amplitude qe and random phase 2πftn. Therefore, independently of f, the 
result is an origin-centered 2-D Gaussian distribution described by Eq. (A1) with s = 0 and  
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 2 2 / 2e dq Nσ = η     . (A5) 
 
A random number chosen from this distribution is the noise that is added to the DFT component 
shown in Eq. (4), and, divided by (qeηd)2ηhNL, appears as the noise term Em in Table 1.  
 Eq. (A4) uses the continuous Fourier transform as an easy way to reach the desired result. 
If the idealized response δ(t - tn) is replaced by the actual detector response having finite width, 
and this width is reasonably densely sampled, the same result is obtained with the discrete 
Fourier transform used in Eq. (4). The reader who wishes to pursue this topic further may consult 
Lucke20 where the properties of photon-limited noise in the DFT of spatial data are explicated at 
length. The discussion there applies also to the DFT of temporal data, and that paper’s Eq. (26) is 
the equivalent of Eq. (A5) once it is recognized that the total number of photons detected is 
closely approximated by ηdNL and that the error figure shown in this paper’s Fig. 1 is circular (so 
that, as described in the other paper, S2k = 0).  
 
Appendix B – Synthetic Aperture Processing and Resolution  

 The pixel 0 column of Table 1 shows that the matched filter gives a value of MA0 for the 
desired pixel. To justify the claim that the other pixels add to “≈ 0”, we first examine the pixel 1 
column, which is   
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where Cm = exp{2πi[(m - M/2)p]2/λR} has been used. The sum on the right side of the second 
equality is the sum of M – 1 unit-amplitude phasors with phase increment ∆φ = 4πp2/λR. The 
sum is exactly zero – the phasors “wrap” to zero – if the phase of the last phasor is 2π - ∆φ 
greater than the phase of the first, i.e., if  
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or 
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whence 

 
2

Rp
F
λ

=     , (B4) 
 
where F = Mp is the size of the illuminated footprint and M >> 1 has been used. Further, if F is 
determined by the diffraction-limited resolution of a transmitting aperture with diameter DT, i.e., 
F = λR/DT, we find  
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2
TD

p =     , (B5) 
 
for the resolution of an SA system. Eq. (B5) is the same as, for example, Eq. (1.2.9) of Curlander 
and McDonough1. 
 Eqs. (B1) – (B3) are exact only if pixel 1 consists of a point object at its center. Since the 
return is actually spread out over the pixel, these equations are approximate, but the basic 
principle remains: the pixel 1 column of Table 1 makes only a small contribution to the last row 
because the phasors wrap to (nearly) zero. In the pixel 2 column, the phase increment is twice as 
big and the wrapping happens faster. The pixel M - 1 column makes a small contribution because 
it contains only a single term. Intermediate columns make small contributions by a combination 
of these effects. Finally, all these small contributions are random phasors which add up across 
the bottom row of the table to give a sum that is small compared to the coherent sum, MA0, from 
pixel 0.  
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Figure 1. Distribution of measured values with NS

½ = 1, φS = 0, for the ideal case σ'2 = ½ (i.e., ηd 
= ηh = 1), showing 1- and 2-sigma contours. For the non-ideal case, σ'2 is increased in 
accordance with Eq. (5). rexp(iφ) represents a particular measurement taken from this 
distribution. r = n½, where n is the number of photons detected in the measurement (see text). 
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Figure 2. Number and phase uncertainties for phase-sensitive heterodyne detection. ηdηh∆n = 

2 1d h SNη η + . For NS = 0, ∆φ = / 3π  and ∆sinφ = 1/ 2 .   
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Figure 3. Side view of transmitted wave front encountering one range 
resolution element. Azimuthal resolution elements (pixels) are labeled 0 to 
M-1 (see text). The transmitter is traveling to the left. 

 

   

 


